

Manual / Inbetriebnahme L-LAS-TB-Sprühkontroll-System

mit L-LAS-Spray-Control Scope V2.0

(PC-Software für Microsoft® Windows 10, Windows 8, Windows 7)

für Laser Zeilensensoren der L-LAS-TB-...-AL-SC Serie

Sensor Instruments GmbH - Schlinding 11 - D-94169 Thurmansbang Tel.: +49 (0)8544 / 9719-0 - Fax: +49 (0)8544 / 9719-13 E-mail: info@sensorinstruments.de - www.sensorinstruments.de

0 Inhalt

INHALT	2
FUNKTIONSPRINZIP: L-LAS-TB LASER-DURCHLICHT-ZEILENSENSOR .1 Technische Beschreibung.	3 3
INSTALLATION DER L-LAS-SPRAY-CONTROL SOFTWARE	4
FUNKTIONSELEMENTE DER L-LAS-SPRAY-CONTROL-SCOPE 3.1 Kurzbeschreibung der L-LAS-Spray-Control-Scope Bedienoberfläche: 3.2 Vorgangsweise bei der Inbetriebnahme:	5
ANHANG 1 Display Anzeigen 2 Funktion der Digital-Eingänge IN0, IN1 3 Laser Warnhinweis 4 PS232 Schnittztellen Pretekell	 13 13 13 14
	INHALT FUNKTIONSPRINZIP: L-LAS-TB LASER-DURCHLICHT-ZEILENSENSOR 1.1 Technische Beschreibung INSTALLATION DER L-LAS-SPRAY-CONTROL SOFTWARE FUNKTIONSELEMENTE DER L-LAS-SPRAY-CONTROL-SCOPE 3.1 Kurzbeschreibung der L-LAS-Spray-Control-Scope Bedienoberfläche: 3.2 Vorgangsweise bei der Inbetriebnahme: ANHANG 4.1 Display Anzeigen 4.2 Funktion der Digital-Eingänge IN0, IN1 4.3 Laser Warnhinweis 4.4 RS232 Schnittstellen-Protokoll

Funktionsprinzip: *L-LAS-TB-...* Laser-Durchlicht-Zeilensensor Technische Beschreibung

Bei den Laser-Zeilensensoren der *L-LAS-TB-... Serie* tritt der Laserstrahl einer Laserdiode (λ =670nm, 0,4mW Ausgangsleistung, Laserklasse 1) über geeignete Kollimatoren und Blenden als parallel gerichtetes Laserlicht mit homogener Lichtverteilung als Laserlinie aus der Sendeoptik aus. In der Empfangsoptik trifft die Laserlinie auf einen CMOS-Zeilen-Empfänger. Die CMOS-Zeile besteht aus vielen, sehr eng benachbarten, zu einer Linie angeordneten, einzelnen Empfangselementen (Pixel). Die während der Integrationszeit gesammelte Lichtmenge jedes dieser Empfangselemente wir als Analogspannung (Videosignal) separat ausgelesen und nach erfolgter Analog-Digital-Wandlung als Digitalwert in einem Datenfeld gespeichert.

Befindet sich ein nichttransparentes Messobjekt in der Laserlinie, so werden durch das parallel gerichtete Laserlicht nur die Empfangselemente (Pixel) der Zeile beleuchtet, die außerhalb der Schattenzone des Messobjektes liegen. Dies führt dazu, dass die Pixel innerhalb der Schattenzone eine wesentlich kleinere Analogspannung abgeben im Vergleich zu den beleuchteten Pixel (vgl. Abb. 1). Durch geeignete Software-Algorithmen können die Bereiche der Schattenzonen aus dem zuvor gespeicherten Datenfeld ermittelt werden. Da der Abstand der Pixel des Zeilendetektors bekannt ist, kann somit die Größe und Position des Messobjektes ermittelt werden. Der Mikrocontroller des *L-LAS-TB-...-AL Sensors* kann mit Hilfe einer Windows PC-Software über die serielle RS232 Schnittstelle parametrisiert werden. Es können verschiedene Auswerte-Betriebsarten eingestellt werden. Die Visualisierung der Schaltzustände erfolgt über vier LEDs (1x grün, 1x gelb und 2x rot), die am Gehäuse des *L-LAS-TB-... Sensors* integriert sind. Die *L-LAS-TB-... Kontrollelektronik* besitzt drei Digital-Ausgänge (OUT0, OUT1, OUT2), deren Ausgangspolarität per Software einstellbar ist. Über zwei Digital-Eingänge (IN0, IN1) kann der externe WEISSLICHTABGLEICH (IN1) Funktionalität und eine externe TRIGGER (IN0) Funktionalität per SPS vorgegeben werden. Ferner wird ein schneller Analogausgang (0...+10V oder 4...20mA mit 12-Bit Digital/Analog-Auflösung bereitgestellt.

2 Installation der *L-LAS-Spray-Control* Software

Folgende Hardware Voraussetzungen sind für eine erfolgreiche Installation der *L-LAS-Spray-Control-Scope* Software erforderlich:

- 1GHz Pentium-kompatibler Prozessor oder besser.
- CD-ROM oder DVD-ROM Laufwerk
- Ca. 200 MByte freier Festplattenspeicher
- SVGA-Grafikkarte mit mindestens 1024x768 Pixel Auflösung und 256 Farben oder besser.
- Windows® 7, Windows® 8 oder Windows® 10 Betriebssystem
- Freie serielle RS232-Schnittstelle oder USB-Port mit USB-RS232-Adapter am PC

Bitte installieren Sie die L-LAS-Spray-Control-Scope Software wie im folgendem beschrieben:

1.	CD-Laufwerk (D:)	Legen Sie die Installations-CD-ROM in das CD-ROM Laufwerk ein. In unserem Beispiel nehmen wir an, dass es sich um das Laufwerk "D" handelt.
2.	setup	Starten Sie den Windows-Explorer und wechseln Sie im Verzeichnisbaum des CD-ROM Laufwerks in das Installationsverzeichnis D:\INSTALL\ Die eigentliche Installation wird durch Doppelklick auf das SETUP.EXE Symbol gestartet. Alternativ hierzu kann die Software Installation durch Anklicken des START- Ausführen Knopfes und anschließender Eingabe von "D:\INSTALL\setup.exe" und Tastendurch auf den Ok Knopf.
3.		Während der Installation wird eine neue Programm-Gruppe für die Software im Windows Programm-Manager erzeugt. Außerdem wird in der erzeugten Programmgruppe ein Icon für den Start der Software automatisch generiert. Falls die Installation erfolgreich durchgeführt werden konnte, meldet sich das Installationsprogramm mit einer Dialogbox 'Setup OK''.
4.		Der Start der <i>L-LAS-Spray-Control-Scope</i> Software erfolgt durch Mausklick auf das entsprechende Symbol in der neu erzeugten Programmgruppe unter: Start >Alle Programme > <i>L-LAS-TBSCI-ScopeV2.0</i>

Deinstallation der L-LAS-Spray-Control-Scope Software:

Programme und Funktionen	Die Deinstallation wird mit Hilfe des Windows®-Deinstallations- Tools aus der Systemsteuerung durchgeführt. Das Windows®-Deinstallations-Programm finden Sie im Ordner
	Start/Einstellungen/Systemsteuerung.

3 Funktionselemente der L-LAS-Spray-Control-Scope

3.1 Kurzbeschreibung der L-LAS-Spray-Control-Scope Bedienoberfläche:

Die L-LAS-Spray-Control-Scope Bedienoberfläche bietet viele Funktionen:

- Visualisierung der Messdaten in numerischen und graphischen Ausgabefeldern.
- Einstellen der Beleuchtungsquelle.
- Einstellung der Polarität der digitalen Schaltausgänge OUT0, OUT1, OUT2.
- Auswahl eines geeigneten Auswerte-Modus.
- Abspeichern der Parameter in den RAM, EEPROM Speicher an der Kontrollelektronik oder in ein Konfigurationsfile auf der Festplatte des PC.
- **1** Funktions-Felder zum Senden / Lesen der Einstellungs-Parameter (Parameter-Transfer).
- 2 START / STOP Funktion-Felde für den RS232 Datenaustausch zum Sensor.
- **3** Voreinstellung der aktuellen Parameter am Sensor (Triggermodus, Auswerteschwelle, ...)
- 4 Tabulator Reihe zum Umschalten zwischen den verschiedenen Tabulator-Grafik-Fenster.
- 5 Grafik-Ausgabe (Anzeige des zeitlichen Messwerteverlaufs mit Lernwert und Toleranzband)
- 6 Numerische Anzeigeelemente (Messfrequenz, Kanten-Anzahl, Programm-Nummer, ...)
- 7 Messwertanzeige in [mm] oder [Pixel].

Im Folgenden werden die einzelnen Bedienelemente der *L-LAS-Spray-Control-Scope* Software beschrieben. Eine Kurz-Hilfe wird durch Drücken der rechten Maus-Taste auf das jeweilige Funktionselement angezeigt.

3.2 Vorgangsweise bei der Inbetriebnahme:

A) Einjustage von Sender und Empfänger:

Zunächst sollte der L-LAS Sender und Empfänger mechanisch möglichst optimal zueinander ausgerichtet werden. Dies sollte über eine Traverse oder eine feste Fixierung von Sender und Empfänger erfolgen.

B) Bereitstellung der Spannungsversorgung / SPS Anschluss:

 Am Gehäuse der L-LAS-TB-...-AL Sensoren befinden sich drei Anschlussbuchsen.

Über 4-polige M5 Anschluss-Buchse Typ Binder 707 erfolgt die Kontaktierung der seriellen RS232 Schnittstelle.

Über eine 8-polige M9-Anschluss-Buchse Typ Binder 712 kann der Sensor mit der SPS/Spannungsversorgung verbunden werden.

Über eine 4-polige M9-Anschluss-Buchse Typ Binder 712 erfolgt die Kontaktierung der L-LAS-Sendereinheit.

8-polige Buchse Typ Binder 712 <u>Anschlusskabel:</u>cab-las8/SPS (Länge 2m, Kabelmantel: PUR)

	Pin	Farbe	Belegung
1 Mar			L-LAS-TBAL
	1	weiß	0V (GND)
	2	braun	+24 VDC ± 10%
	3	grün	IN0 (EXT TRIGGER)
(H)	4	gelb	IN1 (WHT BALANCE)
	5	grau	OUT0 (BUSY)
	6	rosa	OUT1 (ERR EVAL A)
	7	blau	OUT2 (ERR EVAL B)
	8	rot	Analog (Spannung 0+10V oder Strom 420mA)

C) Verbindung zur RS-232 Schnittstelle:

4-polige M5 Buchse Typ Binder 707, <u>Anschlusskabel:</u> cab-las4/PC (Länge 2m, Kabelmantel: PUR)

D) Verbindungsaufbau über RS-232:

VIDEO	ERNE KALIB REK SCOPE VE	RBINDUNG
▶ € ∰ € ₽ 0 RT [1256]: ▶ R5-232 ▶ € 2	BAUDRATE:	HW INFO
IP ADRESSE:	PORT NUMMER	
TRY TO CONNECT! RS232 open-com-port: successful! Echo Check - Line Ok! Echo Check - Line Ok!	<u>A</u>	ACCEPT
L-LAS-TB-TSLXX-AL V5.1 03/Nov/17 Serial-No:1		
	2	CONNECT

VERBINDUNG Registerkarte:

Nach Anklicken dieser Registerkarte öffnet sich auf der Bedienoberfläche das VERBINDUNGS Fenster. Hier können verschiedene Einstellungen zum Datenaustausch über die serielle RS232 Schnittstelle vorgenommen werden. Grundsätzlich basiert die Kommunikation auf folgenden Vorgabewerten:

- Standard RS232: kein Hardware-Handshake
- 3-Draht Verbindung: GND, TXD, RXD
- Baudraten von 9600Baud bis 115200Baud
- 8 DATEN-Bits, 0 PARITÄTS-Bit, 1 STOP-Bit
- Höchstwertiges Byte zuerst (MSB first).
- Standard Baudrate = 115200Baud

Geräte-Manager Datei Aktion Ansicht ? Computer Participation Participation Datei Aktion Ansicht ? D

PORT [1...256]:

In diesem Funktionsfeld kann die Nummer des Kommunikations-Port eingestellt werden. Mögliche Werte sind COM 1 bis 255. Die Kommunikations-Port-Nummer kann in der Systemsteuerung unter: START/Systemsteuerung/Geräte-Manager im Windows® Betriebssystem finden.

Alternativ können die Kommunikations-Port-Nummern, die auf der Rechner Hardware verfügbar sind, durch Anklicken der Lupe-Taste gesucht werden.

Die verfügbaren COM-Ports werden im Status-Textfeld angezeigt.

BAUDRATE:

In diesem Funktionsfeld kann die Baudrate der seriellen Schnittstelle eingestellt werden: Mögliche Werte: 9600Baud, 19200Baud, 38400Baud, 57600Baud, 115200Baud, 230600Baud, 460800Baud oder 921600Baud. (Auslieferungszustand = 115200 Baud).

CONNECT:

Nach Anklicken dieser Taste wird mit den eingestellten Kommunikations-Parametern versucht eine Verbindung zum Sensor aufzubauen. Die Rückmeldung über den Verlauf des Verbindungsaufbaus erfolgt im Status Anzeigefeld.

DISCONNECT:

Die Verbindung zur Sensor-Hardware wird getrennt. Der zuvor geöffnete Kommunikations-Port wird wieder freigegeben.

ACCEPT:

Mit der Taste ACCEPT werden die aktuellen Kommunikations-Einstellungen in die Datei *TB-Scope.ini* gespeichert. Nach Neustart der *L-LAS-Spray-Control-Scope* Software wird die Kommunikation mit den in der *TB-Scope.ini* Datei gespeicherten Parameter geöffnet.

E) Einstellung der Laserleistung / Hell-Abgleich:

Voraussetzung: Erfolgreicher Verbindungsaufbau ->> entsprechende Statuszeilenmeldung im CONNECT-Tab sichtbar.

Die Einstellung der Laserleistung erfolgt im VIDEO-Tabulator. Das Graphik-Auswahl-Funktionselement muss auf RAW eingestellt sein. Hierdurch werden die Rohdaten des Videosignals vom Zeilensensor zum PC übertragen.

Beachte: Die Graphik wird nur bei aktiver Datenanforderung aktualisiert, hierzu muss die Datenübertragung gestartet werden.

POWER:

SEND

Durch Anpassung der Laserleistung sollte das VIDEO Intensitätsprofil so eingestellt werden, dass der Kurvenverlauf im oberen Drittel des Aussteuerbereiches liegt. Beachte:

Änderungen werden erst nach Anklicken der SEND Taste am Sensor aktiviert!

VOR HELL-ABGLEICH:

NORM

Der Hellabgleich erfolgt im VIDEO-TABULATOR, das Graphik-Auswahl Funktionsfeld muss auf NORM eingestellt werden.

Der Hell-Abgleich muss nach jeder Änderung der Parameter wie z.B. Laser-Leistung POWER oder der Änderung der Integrations-Zeit EXPOSE-TIME[ms] neu durchgeführt werden.

Der Hell-Abgleich kompensiert störende Fremdlicht-Einflüsse oder leichte mechanische Fehl-Justierungen zwischen Sender und Empfänger.

Es wird empfohlen, den Hell-Abgleich regelmäßig durchzuführen. Im automatisierten Ablauf kann der Hellabgleich über die SPS unmittelbar vor der Messung ausgelöst werden. Hierzu wird über den externen Eingang IN1/Pin4/gelb ein kurzer HIGH-Puls (10ms < T < 750ms) angelegt.

Nach Anklicken dieser Software Taste wird der Hell-Abgleich automatisch an der Kontrollelektronik ausgeführt. Die Y-Werte des NORM Videobildes sollten nach dem Abgleich über die Gesamte Messstrecke des Zeilensensors nahe der X-Achse liegen.

Falls das Auswahlfeld / Speicherziel auf EEPROM eingestellt ist, wird der aktuell durchgeführte Hell-Abgleich in das nichtflüchtige EEPROM der Kontrollelektronik geschrieben.

NACH HELL-ABGLEICH:

F) Aufzeichnung von Sprühereignissen:

Sprühereignisse können auf verschiedene Weise aufgezeichnet werden. Hierzu muss zunächst eine Aufzeichnungs-Betriebsart eingestellt werden:

	SCAN-MODE
SINGLE SHOT	
CONTINUOUS	
✓ SINGLE SHOT	
EXT INO L/H	
EXT IN0 HIGH	

CONTINUOUS: Ständige Sprühstrahlerfassung (für Testzwecke) SINGLE SHOT: Einzelne Sprühstrahlerfassung nach anklicken der START Taste EXT IN0 L/H: Per SPS über eine L/H Flanke getriggerte Sprühstrahl-Erfassung. EXT IN0 HIGH: Per SPS über HIGH Pegel aktivierte Sprühstrahl-Erfassung.

Beachte: Die Graphik wird nur bei aktiver Datenanforderung aktualisiert, hierzu muss die Datenanforderung gestartet werden.

 \triangleright

In nebenstehender Abbildung ist ein typisches Bild einer Sprühaufzeichnung zu sehen. Über der X-Achse (Pixel des Zeilensensors) ist die Sprühdichteverteilung als rote Kurve sichtbar. Mit Hilfe einer einstellbaren Suchschwelle THD[%] (orange horizontale Linie) können Schnittpunkte (Kanten) aus dem Dichteverlauf abgeleitet werden. Ein schwarzer Cursor gibt die Position/Höhe des Dichte-Maximas an.

In der NORM-TAB Graphikanzeige wird ein normierter Auswerte-Speicher angezeigt. Im Mikrocontroller werden hierbei während der Messwertaufzeichnung ständig Einzelbilder von Zeilensensor aufsummiert und nach der Aufzeichnung mit dem SCAN-Zählerstand zur Sprühdichteverteilung normiert.

X-Achse: Pixel-Position (Messbereich)

Y-Achse: Normierte "Sprühdichte" Information

OUTPUT FILE:

Mit Hilfe dieser Funktionsfelder können die Auswerte-Ergebnisse in eine Ausgabedatei gespeichert werden.

Nach Anklicken der File-Open Taste kann über ein Dialogfeld ein Dateiname vorgegeben werden.

Hierauf kann über den Binärschalter der Speichervorgang freigeschaltet werden. Zum Speichern in die Ausgabedatei muss zunächst der [NORM] –TAB angewählt werden.

Das Abspeichern der Messwerte in die Ausgabedatei erfolgt nach anklicken der RUN Taste (Datenanforderung).

BEACHTE:

Die Datenausgabe in die Ausgabedatei ist nur in den Aufzeichnungs-Betriebsarten

- SINGLE SHOT,
- EXT-IN0-L/H und
- EXT IN0-HIGH möglich.

G) Arbeit mit der Lerntabelle:

4	VIDE	0	NOF	RM	1	PARA	1	LERN	۱	K	AL	IB \	VERBIN	DUNG			
TE/	TEACH-IN SETTINGS																
		A1	A2	B1	B2	EVM_	A	EVM_	в	D	R	VTHD	VAL_A	VAL_B	TOL_A	TOL_B	4
	P 0	0	0	0	0	CENT	Ŧ	DIST	Ŧ	L	Ŧ	40	384	384	10	10	Ĩ
	P 1	1	-1	1	-1	CENT	Ŧ	DIST	Ŧ	L	Ŧ	20	800	230	25	20	
	P 2	0	0	0	0	CENT	Ŧ	DIST	•	L	Ŧ	40	575	161	10	10	Ι
	P 3	0	0	0	0	CEN	Ŧ	DIST	Ŧ	L	Ŧ	40	384	384	10	10	
	P 4	0	0	0	0	CENT	Ŧ	DIST	Ŧ	L	Ŧ	40	384	384	10	10	
	P 5	0	0	0	0	CENT	Ŧ	DIST	Ŧ	L	Ŧ	40	384	384	10	10	2

der Lerntabelle können 16 In Programme gespeichert werden. Für jedes Programm können jeweils zwei unabhängige Kanten-Auswertungen EVM A und EVM B, sowie eine Videoschwelle VTHD und eine Kantensuchrichtung DIR vorgegeben werden.

Ferner kann für jede Kanten-Auswertung A und B ein separates

Toleranzband TOL_A und TOL_B um den jeweiligen Lernwert vorgegeben werden.

Die Lerntabelle dient zur Kantensuche am normierten SCAN Datenfeld.

A1:= Kanten Index Position (+1 = erste ansteigende Kante, Auswertung A)

A2:= Kanten Index Position (-1 = erste abfallende Kante, Auswertung A)

B1:= Kanten Index Position (+1 = erste ansteigende Kante, Auswertung B)

B2:= Kanten Index Position (-1 = erste absteigende Kante, Auswertung B)

DIR:= Kanten Suchrichtung L = von links nach rechts (von Pixel 1)

EVM_A / EVM_B: = EVALMODE A /B := OFF, POS, CENTER, DISTANCE, DMAX, AREA oder SYMMETRIE

VTHD:= Video Schwelle zur Kantensuche

VAL_A:= Lernwert Auswertung A

VAL_B:= Lernwert Auswertung B

TOL_A:= Toleranzband Auswertung A

TOL_B:= Toleranzband Auswertung B

Auswertung A:

Kantensuche von links nach rechts DIR=L, VTHD=20% (orange Schwelle)

EVM_A: CENTER Position zwischen der ersten ansteigenden [A1=+1] zur ersten abfallenden Flanke [A2= -1].

Auswertung B:

Kantensuche von links nach rechts DIR=L, VTHD=20% (orange Schwelle)

EVM_B: DISTANCE, Abstand zwischen der ersten ansteigenden [B1=+1] zur ersten abfallenden Flanke [B2=-1].

S	PROG : 1 CAN-CNT 1000
S-FI	REQ [Hz]:
=	2
	A1 [pix] 692
	A2 [pix] 931
	B1 [pix] 692
	B2 [pix]

Die nebenstehenden Anzeige-Elemente geben Informationen über die gefundenen Kanten aus dem normierten Datenfeld.

Die Messwerte für die Strahlpositionen ergeben sich aus den bekannten Pixel-Abständen der Empfängerzeile über folgende Formel:

Randbedingung: 63.5[µm/pixel] = Pixel-Pitch Zeilensensor

 $mm_{Wert} = (Pixel_{Wert} * 63.5)/1000$

Die Auswertegrößen AREA, SYMMETRY und DMAX sind normierte Größen und beziehen sich auf den maximalen Y-Wertebereich von 0 bis 32767.

DMAX := Dichte-Maximum (0 ... 32767)

XMAX := x-Position des Dichte-Maximums

AREA := Fläche unter der Kurve zwischen den Kanten A1 und A2, bzw. B1 und B2

SYMM:= Flächenverhältnis

SYMM = 16384 * (AREA1)/(AREA1 + AREA2)

4 Anhang

4.1 Display Anzeigen

Am Gehäuse der L-LAS-TB-...-AL-SC Kontrolleinheit befinden sich 4 Bicolor LEDs zur Zustandsanzeige.

L-LAS-TB- ... - R-AL-SC (Empfänger)

4.2 Funktion der Digital-Eingänge IN0, IN1

SPS ANBINDUNG:

Trigger Eingang IN0/Pin3/grün:

Der Start der Messwert-Aufzeichnung in der Kontrollelektronik kann simultan zum Sprühvorgang erfolgen. Der Trigger Vorgang an der Kontrollelektronik erfolgt über einen HIGH Pegel am Digitaleingang IN0/Pin3/grün. Die Datenaufzeichnung startet mit der L/H Flanke an IN0. Mit dem darauffolgenden H/L Pegelwechsel stoppt die Datenaufzeichnung. Nach typ. 1ms liegt das Auswerteergebnis vor und kann über die RS-232 Schnittstelle ausgelesen werden (Befehl <ORDER=18> oder <ORDER=19>). Maximal können 5000 Abtastungen durchgeführt werden, bei 1kHz Abtastrate entspricht dies einer Zeitdauer von 5 Sekunden.

Über die *L-LAS-TB-Spray-Control-Scope* Bediener Software muss zuvor die "getriggerte" Betriebsart (SCAN-MODE) eingestellt werden.

Eingang IN1/Pin4/gelb – RESET PULS:

Dieser Digitaleingang an der Kontrollelektronik dient als "Weißlichtabgleich" am Zeilensensor. Durch Anlegen eines kurzen HIGH-Pulses (0ms < T < 750ms) unmittelbar vor dem Start des Sprühvorgangs kann die Pixelzeile auf die aktuellen Umgebungsbedingungen (Umgebungslicht, leichte Dejustage der Sensorik, usw.) neu referenziert werden. Zur Erzielung von optimalen Auswerte-Ergebnissen sollte der Weißlicht-Abgleich vor jeder Messung durchgeführt werden.

Digitalausgang OUT0/Pin5/grau (BUSY):

Der Digitalausgang OUT0 dient zum "Handshake" mit der SPS. Sobald der Start der Datenaufzeichnung am Sensor erfolgt, wird dies durch einen Pegelwechsel am Digitalausgang OUT0/Pin5/grau angezeigt.

Das Auswerteergebnis liegt vor, sobald der BUSY Ausgang am Sensor wieder auf seinen Ausgangspegel zurückwechselt.

4.3 Laser Warnhinweis

4.4 RS232 Schnittstellen-Protokoll

RS-232 Datenübertragung:

- Standard RS232 serielles Interface, kein Hardware Handshake, 3-Draht-Verbindung: GND, TXD, RXD
- Geschwindigkeit: 9600 Baud, 19200 Baud, 38400 Baud, 57600 Baud oder 115200 Baud
- 8 Daten-Bits, KEIN Paritäts-Bit, 1 STOP-Bit, Binärdaten-Modus.
- Default Baudrate: 115200 Baud

METHODE:

Die Sensor Kontrollelektronik verhält sich stets passiv. Der Datenaustausch wird daher vom PC (oder SPS) initiiert. Der PC sendet hierbei ein Datenpaket ("Frame") wahlweise mit oder ohne angehängte Daten, worauf die Sensor-Kontrolleinheit mit einem der Anforderung entsprechenden Frame antwortet. Das Datenpacket besteht aus einem Kopfteil ("HEADER") und dem optionalen Daten-Anhang("DATA")

HEADER

Byte : Synchronisationsbyte <SYNC> (85dez = 0x55hex)
 Byte : Befehlsbyte <ORDER>
 Byte : Argument <ARG LO>

- 4. Byte : Argument <ARG HI>
- 5. Byte : Datenlänge <LEN LO>
- 6. Byte : Datenlänge <LEN HI>
- 7. Byte : Checksumme Header < CRC8 HEAD>
- 8. Byte : Checksumme Data < CRC8 DATA>

Das erste Byte ist ein Synchronisationsbyte und ist immer 85dez (55hex).

Das zweite Byte ist das sog. Befehlsbyte <ORDER>, es bestimmt welche Aktion durchgeführt werden soll (Daten senden, Daten speichern, usw.).

Als drittes und viertes Byte folgt ein 16bit Wert <ARG>. Das Argument wird abhängig vom Befehl mit einem entsprechenden Wert belegt.

Das fünfte und sechste Byte bilden wieder einen 16bit Wert <LEN>. Er gibt die Anzahl der angehängten Datenbytes an. Falls keine Daten angehängt werden ist <LEN=0>, die maximale Datenlänge beträgt 512 Bytes <LEN=512>. Das siebte Byte wird mit der CRC8 Checksumme über alle Datenbytes gebildet.

Das achte Byte ist die CRC8 Checksumme über den Header und wird über die Bytes 1 bis incl. 7 gebildet. Die Gesamtlänge des Headers ist stets 8 Bytes. Der gesamte Frame kann zwischen 8 und 520 Bytes umfassen.

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	 Byte n+7	Byte n+8
Header	Header	Header	Header	Header	Header	Header	Header	Data	Data	Data	Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Data1 (lo byte)	Data1 (hi byte)	 Data n/2 (lo byte)	Data n/2 (hi byte)

<order></order>	Bedeutung des 2.Bytes (Befehlsbyte) <order></order>	ORDER-TABLE
0	NOP	no operation
1	Sende Parameter von PC zu L-LAS-RAM	$PC \Rightarrow L\text{-}LAS\text{-}RAM$
2	Hole Parameter von L-LAS-RAM	$L-LAS-RAM \Rightarrow PC$
3	Sende Parameter vom PC zu L-LAS EEPROM	$PC \Rightarrow L-LAS-EEPROM$
4	Hole Parameter von EEPROM des L-LAS	L-LAS-EEPROM \Rightarrow PC
5	Echo Prüfung: Hole Echo von L-LAS	first word=0x00AA=170dec
7	Hole Firmware Versions-Info von L-LAS	$L\text{-}LAS \Rightarrow PC$
8	Hole Messwerte von L-LAS	$L\text{-}LAS\text{-}RAM \Rightarrow PC$
9	Hole Video-Bild von L-LAS	$L\text{-}LAS\text{-}RAM \Rightarrow PC$
11	Aktiviere Einzel Messdaten-Erfassung (SINGLE SHOT)	$PC \Rightarrow L-LAS-RAM$
12	Aktiviere Weislicht-Abgleich (WHITE-BALANCE)	$L-LAS-RAM \Rightarrow PC$
16	Aktiviere Auswerte-Programm (PROG-NO)	$PC \Rightarrow L-LAS-RAM$
26	Sende Lernvektor (TEACH-TABLE VECTOR)	$PC \Rightarrow L\text{-}LAS\text{-}RAM$
27	Hole Lernvektor (TEACH-TABLE VECTOR)	$L-LAS-RAM \Rightarrow PC$

Sensor We Let's make sensors more individual

CRC8 Checksumme

Zur Verifizierung der Datenintegrität wird der sog. "Cyclic Redundancy Check" oder CRC verwendet. Mit Hilfe dieses Algorithmus können einzelne Bitfehler, fehlende Bytes und fehlerhafte Frames erkannt werden. Dazu wird über die zu testenden Daten (-bytes) ein Wert – die sog. Checksumme – berechnet und mit dem Datenpaket übertragen. Die Berechnung folgt dabei einer genau vorgegebenen Methode basierend auf einem Generatorpolynom. Die Länge der Checksumme ist 8bit (= 1 Byte).

Das Generatorpolynom entspricht: $X^8 + X^5 + X^4 + 1$

Um die Daten nach dem Empfang zu verifizieren wird die CRC Berechnung erneut durchgeführt. Stimmen übertragener und neu errechneter CRC Wert überein, sind die Daten fehlerfrei.

Um die Checksumme zu berechnen kann folgender Pseudocode verwendet werden:

0	94	188	226	97	63	221	131	194	156	126	32	163	253	31	65
157	195	33	127	252	162	64	30	95	1	227	189	62	96	130	220
35	125	159	193	66	28	254	160	225	191	93	3	128	222	60	98
190	224	2	92	223	129	99	61	124	34	192	158	29	67	161	255
70	24	250	164	39	121	155	197	132	218	56	102	229	187	89	7
219	133	103	57	186	228	6	88	25	71	165	251	120	38	196	154
101	59	217	135	4	90	184	230	167	249	27	69	198	152	122	36
248	166	68	26	153	199	37	123	58	100	134	216	91	5	231	185
140	210	48	110	237	179	81	15	78	16	242	172	47	113	147	205
17	79	173	243	112	46	204	146	211	141	111	49	178	236	14	80
175	241	19	77	206	144	114	44	109	51	209	143	12	82	176	238
50	108	142	208	83	13	239	177	240	174	76	18	145	207	45	115
202	148	118	40	171	245	23	73	8	86	180	234	105	55	213	139
87	9	235	181	54	104	138	212	149	203	41	119	244	170	72	22
233	183	85	11	136	214	52	106	43	117	151	201	74	20	246	168
116	42	200	150	21	75	169	247	182	232	10	84	215	137	107	53

table[]

BEISPIELE RS-232 Datentransfer:

< ORDER = 5 > : ECHO-CHECK, READ LINE OK von Sensor.

DATA FRAME PC → Sensor (8 Bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0×55	cordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0,55	Soluer>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85	5	0	0	0	0	170	60
		AR	G=0	LEI	N=0		

DATA FRAME Sensor \rightarrow PC (8 Bytes)

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85	5	170	0	0	0	170	178
		ARG	=170	LEI	N=0		

Serial – number of sensor = <ARG> value

< ORDER = 7 > : Lese FIRMWARE-VERSIONS-STRING von Sensor.

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	7	0	0	0	0	170	82
		AR	G=0	LEI	N=0		

DATA FRAME Sensor → PC (8 + 72) Bytes

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	ASCII	ASCII	ASCII	ASCII
85 (dec)	7	170	0	72	0	XXX	82	L	-	L	Α
		ARG=170	(SerNo)	LEN	I =72						

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
ASCII											
S	-	Т	В	-	S	С	-	Т	S	L	Х

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
ASCII											
Х	-	A	L		v	1		0		0	

Byte37	Byte38	Byte39	Byte40	Byte41	Byte42	Byte43	Byte44	Byte45	Byte46	Byte47	Byte48
Data											
ASCII											
	2	6	1	M	Α	R	1	1	8		

Byte49 Data	Byte50 Data	Byte51 Data	Byte52 Data	Byte53 Data	Byte54 Data	Byte55 Data	Byte56 Data	Byte57 Data	Byte58 Data	Byte59 Data	Byte60 Data
ASCII											

Byte61 Data	Byte62 Data	Byte63 Data	Byte64 Data	Byte65 Data	Byte66 Data	Byte67 Data	Byte68 Data	Byte69 Data	Byte70 Data	Byte71 Data	Byte72 Data
ASCII											

Byte73 Data	Byte74 Data	Byte75 Data	Byte76 Data	Byte77 Data	Byte78 Data	Byte79 Data	Byte80 Data
ASCII							

< ORDER = 11 > : AKTIVIERE EINZEL MESSDATENAUFZEICHNUNG AM SENSOR

Aktiviere das eine einzelne Messdatenaufzeichung am Sensor. Im Argument <ARG> des Header-Frames wird die Anzahl der Abtastungen (Einzelmessungen) vorgegeben.

DATA FRAME PC → Sensor (8-Bytes) <mark>ARG = ANZAHL DER EINZELMESSUNGEN (100 … 5000)</mark>

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	11	232	3	0	0	170	67
		ARG	=1000	LEI	N=0		

DATA FRAME Sensor → PC (8 Bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	11	0	0	0	0	170	67
		AR	G=0	LE	N=0		

< ORDER = 12 > : AKTIVIERE WEISSLICHTABGLEICH AM SENSOR

Aktiviere den Weißlichtabgleich am Sensor. Im Argument <ARG> des Header-Frames wird das Speicher-Ziel vorgegeben.

DATA FRAME PC → Sensor (8-Bytes) ARG : 0=RAM, 1=EEPROM

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	12	0	0	0	0	170	67
		ARC	G = 0	LEI	N=0		

DATA FRAME Sensor \rightarrow PC (8 Bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	12	0	0	0	0	170	67
		AR	G=0	LEI	N=0		

< ORDER = 16 > : AKTIVIERE AUSWERTE PROGRAMM AM SENSOR

Aktiviere das aktuelle Auswerteprogramm am Sensor, die Programm-Nummer (0 bis 15) wird im Argument übertragen.

DATA FRAME PC → Sensor (8-Bytes) ARG = PROG-NO

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0.455	cordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0,55	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	16	1	0	0	0	170	65
		ARC	3 =1	LEI	N=0		

DATA FRAME Sensor \rightarrow PC (8 Bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	16	1	0	0	0	170	65
		AR	G=1	LEI	N=0		

< ORDER = 8 > : GET MEASURED VALUES [PIXEL] FROM THE L-LAS-SENSOR

DATA FRAME PC \rightarrow Sensor (8 bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0.455	cordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0,050	 Soluei > 	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	8	0	0	0	0	170	118
		AR	<mark>G=0</mark>	LEI	N=0		

DATA FRAME Sensor → PC (8 + 64) bytes

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Raw1 (lo byte)	Raw1 (hi byte)	Raw2 (lo byte)	Raw2 (hi byte)
85 (dec)	8	0	0	64	0	XXX	118	180	2	163	3
	ARG=0 LEN=64		1=64			PIX A	1 = 692	PIX A	2 = 931		

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Raw3	Raw3	Raw4	Raw4	Raw5	Raw5	Raw6	Raw6	Raw7	Raw7	Raw8	Raw8
180	2	163	3	43	3	239	0	241	59	241	59
PIX_B	1 = 692	PIX_B	2 = 931	XVAL_	A = 811	XVAL	B=239	DMAX_	A=15345	DMAX_I	3=15345

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
Raw9	Raw9	Raw10	Raw10	Raw11	Raw11	Raw12	Raw12	Raw13	Raw13	Raw14	Raw14
22	3	22	3	7	44	7	44	19	54	19	54
IDX_/	A=790	IDX_E	3=790	AREA_A=11271		AREA_E	3=11271	SYMM	A=13843	SYMM_I	B=13843
						0					

0

Byte61 Data	Byte62 Data	Byte63 Data	Byte64 Data	Byte65 Data	Byte66 Data	Byte67 Data	Byte68 Data	Byte69 Data	Byte70 Data	Byte719 Data	Byte72 Data
Raw27	Raw27	Raw28	Raw28	Raw29	Raw29	Raw30	Raw30	Raw31	Raw31	Raw32	Raw32
231	3	232	3	231	3	0	0	0	0	0	0
DYNTI	ME=999	SCANCOL	JNT=1000		SCANTI	ME=999		RAW	_31=0	RAW	_32=0

Name	Value	Туре
🖨 raw	0x0073263C	raw_struct
raw.pixA1	692	unsigned short
····raw.pixA2	931	unsigned short
··· raw.pixB1	692	unsigned short
····raw.pixB2	931	unsigned short
··· raw.xvalA	811	unsigned short
····raw.xvalB	239	unsigned short
····raw.dmaxA	15345	unsigned short
····raw.dmaxB	15345	unsigned short
···· raw.imaxA	790	unsigned short
···· raw.imaxB	790	unsigned short
····raw.areaA	11271	unsigned short
····raw.areaB	11271	unsigned short
····raw.symmA	13843	unsigned short
····raw.symmB	13843	unsigned short
····raw.emodA	2	unsigned short
····raw.emodB	3	unsigned short
··· raw.edcjet	2	unsigned short
··· raw.raw16	0	unsigned short
···· raw.eprog	1	unsigned short
··· raw.instate	0	unsigned short
··· raw.outstate	0	unsigned short
····raw.runstate	1	short
··· raw.videomax	31964	unsigned short
····raw.mvstart	0	unsigned short
··· raw.mvend	0	unsigned short
····raw.dynpow	0	unsigned short
··· raw.dyntime	999	unsigned short
····raw.scncnt	1000	unsigned short
····raw.scntime	999	long int
···raw.raw31	0	unsigned short
raw.raw32	0	unsigned short

< ORDER = 26 > : SENDE JET (Punktstrahl) LERNVEKTOR EINTRAG ZU-LAS-SENSOR

Die Lerntabelle der Kontrollelektronik zur Auswertung der Punktstrahlen kann bis zu 16 Einträge (Programme) verwalten. Mithilfe der Einträge in der Lerntabelle erfolgt die Kantensuche anhand der Intensitätsverteilung über den einzelnen Pixel am Zeilensensor (vgl. Manual). Jeder Eintrag in der Lerntabelle (Lernvektor) ist 16-Wörter (32 Byte) lang. Aktuell werden nur die ersten 7 Einträge im Lernvektor benutzt, die Spalten-Einträge 8 bis 16 des Lernvektors müssen trotzdem gesendet werden (Insgesamt 40 Byte = 8 Header Byte + 32 Daten Byte).

Beispiel:

Lerntabelle Programm ARG = 1,

Die ersten 7 Spalten der Lerntabelle werden in der L-LAS Kontrollelektronik verarbeitet.

Die restlichen Spalten 8-16 der Lerntabelle müssen trotzdem gesendet werden (mit 0 belegen).

	A1	A2	B1	B 2	EVM_	A	EVM_	в	DI	R	VTHD	VAL_A	VAL_B	TOL_A	TOL_B
P 1	1	-1	1	-1	CENT	Ŧ	DIST	Ŧ	L	Ŧ	20	800	230	25	20

DIR: 0=LEFT, 1=RIGHT

EVALMODE: 0=OFF, 1=POS, 2=CENTER, 3=DISTANCE, 4=CENTER, 5=DMAX, 6=AREA, 7=SYMMETRY

DATA FRAME PC → Sensor (8 Byte +32 Byte) ARG = LERNVEKTOR ZEILEN-INDEX 0 ... 15

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Data1 (lo byte)	Data1 (hi byte)	Data2 (lo byte)	Data2 (hi byte)
85 (dec)	26	1	0	32	0	XXX	50	1	0	-1	-1
		AR	G=1	LEN	1=32			A1	= 1	A2 :	= -1

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Data3	Data3	Data4	Data4	Data5	Data5	Data6	Data6	Data7	Data7	Data8	Data8
1	0	-1	-1	2	0	3	0	0	0	20	0
B1	= 1	B2 = -1 EVM		A = 2	EVM	B = 3	DIR	= 0	VTH	D=20	

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
Data9	Data9	Data10	Data10	Data11	Data11	Data12	Data12	Data13	Data13	Data14	Data14
32	3	230	0	25	0	20	0	0	0	0	0
VAL_	A=800	VAL_	B=230	TOL	A=25	TOL_	B=20	()	()

Byte37 Data	Byte38 Data	Byte39 Data	Byte40 Data
Data15	Data15	Data16	Data16
0	0	0	0
()		0

DATA FRAME Sensor → PC (8 bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	cordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0,00	Solder	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	26	0	0	0	0	170	50
		AR	<mark>G=0</mark>	LEI	N=0		

The argument of the header frame that is sent back from the control unit shows the status of data exchange: ARG = 0, no error

ARG = - 105, data transmission error

< ORDER = 9 > : HOLE DATEN BUFFER VON SENSOR

ACHTUNG: Es können maximal 256 Integer Werte = 512 Byte an Nutzdaten ausgelesen werden. Das Argument <ARG> des Header-Frames bestimmt welcher Daten-Speicher ausgelesen wird:

ARG = 0 : STATISTIC DATEN-BUFFER NACH AUSWERTUNG (NORM Wert)

ARG = 1 : ROHDATEN CMOS VIDEO-ZEILE (256 Pixel verteilt über die Gesamt-Pixel-Anzahl)

ARG = 2 : BUFFER WEISSLICHTABGLEICH (256 Werte verteilt über die Gesamt-Pixel-Anzahl)

ARG = 3 : AKTUELLER SCAN-BUFFER (NORM Wert)

DATA FRAME PC → Sensor

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg></arg>	<arg></arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	9	0	0	0	0	170	185
<u> </u>		AR	G=0	LEI	N=0		

DATA FRAME Sensor → PC

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Para1 (lo byte)	Para1 (hi byte)	Para2 (lo byte)	Para2 (hi byte)
85 (dec)	9	0	0	0	1	XXX	185	200	0	220	0
		AR	G=0	LEN	=256			PIX1	=200	PIX2	=220

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Para3	Para3	Para4	Para4	Para5	Para5	Para6	Para6	Para7	Para7	Para8	Para8
240	0	0	1	44	1	124	1	0	2	88	2
PIX3=240		PIX4	=256	PIX5	5=300	PIX6	=380	PIX7	=512	PIX8	=600

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
Para9	Para9	Para10	Para10	Para11	Para11	Para12	Para12	Para13	Para13	Para14	Para14
168	2	170	2	188	2	188	2	198	2	208	2
PIX9	PIX9=680 PIX10=682)=682	PIX11=700		PIX12	2=700	PIX13	3=710	PIX14	4=720

Byte37 Data	Byte38 Data	Byte39 Data	Byte40 Data	Byte41 Data	Byte42 Data	Byte43 Data	Byte44 Data	Byte45 Data	Byte46 Data	Byte47 Data	Byte48 Data
Para15	Para15	Para16	Para16	Para17	Para17	Para18	Para18	Para19	Para19	Para20	Para20
34	3	32	3	32	3	22	3	19	3	20	3
PIX15=802		PIX16	6=800	PIX1	7=800	PIX18	3=790	PIX19	9=787	PIX20)=788

D
_

Byte509 Data	Byte510 Data	Byte511 Data	Byte512 Data	Byte513 Data	Byte514 Data	Byte515 Data	Byte516 Data	Byte517 Data	Byte518 Data	Byte519 Data	Byte520 Data
Para251	Para251	Para252	Para252	Para253	Para253	Para254	Para254	Para255	Para255	Para256	Para256
124	1	44	1	0	1	240	0	220	0	200	0
PIX251=380		PIX25	2=300	PIX25	3=256	PIX25	4=240	PIX25	5=220	PIX25	<mark>6=200</mark>

Bei <ARG = 0> (STATISTIC-DATEN-BUFFER) und <ARG = 3> (AKTUELLER SCAN-BUFFER) wird im letzten DatenWort (Byte 519, Byte520) der aktuelle Durchlaufzähler (SCAN-COUNTER) mit übertragen.